Math Circles

Let's Think!

- Who is John Conway?
- What are tangles?
- What does the word 'rational' mean?

Let's Think!

- Who is John Conway?
- What are tangles?
- What does the word 'rational' mean?

Fractions and knots!

Operations:

Initial Position:

- Initial Position:
- Lay the ropes parallel to one
 another.C
- Any time the ropes are parallel to each other, we call this our "initial position."

Operations: Twist

- Twist:
- Position B raises the rope
- Position C ducks under the rope

Operations: Rotate

- Rotate:
- Move one position to the left (Clockwise)

Rotate

Shorthand:

- T: represents a `Twist'
- R: represents a `Rotate'

Examples:

Two twists: TT
Twist, Twist, Rotate: TTR

Where does the Math come in?

- Initial position, two parallel ropes, denotes zero position: $\mathbf{0}$
- Twist: We are going to give Twist the mathematical property of: adding 1.

Example:
Twist: $0+\mathrm{T} \Rightarrow 0+1 \ldots \ldots$. We can write as: $0 \Rightarrow 1$
Two Twist: $0+\mathrm{T}+\mathrm{T} \Rightarrow 0+1+1 \ldots \ldots$. We can write as: $0 \xrightarrow{\mathrm{TT}} 2$

Where does the Math come in?

- What about rotations???
- Let's try to undo a twist!

Where does the Math come in?

- We have: T

- What mathematical operation of \mathbf{R} causes a 1 to become a -1 ?

Where does the Math come in?

- We have: T

- What mathematical operation of \mathbf{R} causes a 1 to become a -1 ?

Where does the Math come in?

- We have: TT

- What mathematical operation of \mathbf{R} gets us back to 0 (initial position)?

Where does the Math come in?

- We have:

- What mathematical operation of \mathbf{R} gets us back to 0 (initial position)?

Tangle Numbers

Find the tangle numbers to the following combination of twist and rotations:

1. Sequence: TTT
2. Sequence: TTRTTRTTTT

Tangle Numbers

1. Sequence: $T T T$

Answer: $\frac{0}{1} \xrightarrow{\mathrm{~T}} \frac{1}{1} \xrightarrow{\mathrm{~T}} \frac{2}{1} \xrightarrow{\mathrm{~T}} \frac{3}{1}$
2. TTRTTRTTTT

Answer: $\frac{0}{1} \xrightarrow{\mathrm{TT}} \frac{2}{1} \xrightarrow{\mathrm{R}} \frac{-1}{2} \xrightarrow{\mathrm{TT}} \frac{3}{2} \xrightarrow{\mathrm{R}} \frac{-2}{3} \xrightarrow{\mathrm{TTTT}} \frac{10}{3}$

Let's Practice!

Initial Position	Operations to return to the initial position
T	
$T T=T^{2}$	
$T T T=T^{3}$	
$T T T T=T^{4}$	
T^{n}	

Let's Practice!

Initial Position \quad Operations to return to the initial position

T	$R T$
$T T=T^{2}$	$R T R T T$
$T T T=T^{3}$	$R T R T T R T T$
$T T T T=T^{4}$	$R T R T T R T T R T T$
T^{n}	$R T(R T T)^{n-1}$

Finale!

Sequence: TTRTRTRTRTTRTTTT

Finale!

Sequence: TTRTRTRTRTTRTTTT

(b) Sequence: TTRTRTRTRTTRTTTT

Answer:

$$
\begin{aligned}
& \frac{0}{\mathrm{~T} T \mathrm{~T}} \frac{2}{1} \xrightarrow{\mathrm{R}} \frac{-1}{2} \xrightarrow{\mathrm{~T}} \frac{1}{2} \xrightarrow{\mathrm{R}} \frac{-2}{1} \xrightarrow{\mathrm{~T}} \frac{-1}{1} \xrightarrow{\mathrm{R}} \frac{1}{1} \xrightarrow{\mathrm{~T}} \frac{2}{1} \xrightarrow{\mathrm{R}} \frac{-1}{2} \xrightarrow{\mathrm{TT}} \frac{3}{2} \xrightarrow{\mathrm{R}} \\
& \frac{-2}{3} \xrightarrow{\mathrm{TTTT}} \\
& \frac{10}{3}
\end{aligned}
$$

References

- Math Circles (by Kelly Barnes)
- Tom Davis. Conway's rational tangles. 2010
- James Tanton. Understanding Rational Tangles. 2012

