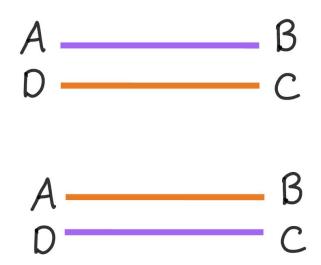
Math Circles

Conway's Rational Tangles

Let's Think!

- Who is John Conway?
- What are tangles?
- What does the word `rational' mean?

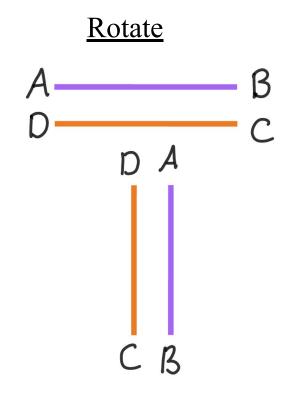
Let's Think!


- Who is John Conway?
- What are tangles?
- What does the word `rational' mean?

Fractions and knots!

Operations:

- <u>Initial Position:</u>
 - Lay the ropes parallel to one another.
 - Any time the ropes are parallel to each other, we call this our "initial position."


Operations: Twist

- <u>Twist:</u>
 - Position B raises the rope
 - Position C ducks under the rope

Operations: Rotate

- <u>Rotate:</u>
 - Move one position to the left (Clockwise)

Shorthand:

- T: represents a `Twist'
- R: represents a `Rotate'

Examples:

Two twists: TT

Twist, Twist, Rotate: TTR

- Initial position, two parallel ropes, denotes zero position: 0
- Twist: We are going to give <u>Twist</u> the mathematical property of: adding 1.

Example:

Twist: $0 + T \implies 0 + 1$ We can write as: $0 \stackrel{T}{\implies} 1$ Two Twist: $0+T+T \implies 0+1+1$ We can write as: $0 \stackrel{TT}{\implies} 2$

- What about rotations???
- Let's try to undo a twist!

- We have: T T R T $0 \Rightarrow 1 \Rightarrow 0$
- What mathematical operation of **R** causes a 1 to become a -1?

- We have: T T R T $0 \Rightarrow 1 \Rightarrow 0$
- What mathematical operation of **R** causes a 1 to become a -1?

$\begin{array}{cccc} T & R & T \\ 0 \Longrightarrow 1 \implies -1 \implies 0 \end{array}$

- We have: TT TT R T R TT $0 \Rightarrow = \Rightarrow = \Rightarrow = \Rightarrow = 0$
- What mathematical operation of **R** gets us back to 0 (initial position)?

- We have: TT R T R TT $0 \Rightarrow = \Rightarrow = \Rightarrow = \Rightarrow 0$
- What mathematical operation of **R** gets us back to 0 (initial position)?

Tangle Numbers

Find the tangle numbers to the following combination of twist and rotations:

- 1. Sequence: TTT
- 2. Sequence: TTRTTRTTTT

Tangle Numbers

1. Sequence: TTTAnswer: $\frac{0}{1} \xrightarrow{T} \frac{1}{1} \xrightarrow{T} \frac{2}{1} \xrightarrow{T} \frac{3}{1}$

2. TTRTTRTTTTTAnswer: $\frac{0}{1} \xrightarrow{TT} \frac{2}{1} \xrightarrow{R} \frac{-1}{2} \xrightarrow{TT} \frac{3}{2} \xrightarrow{R} \frac{-2}{3} \xrightarrow{TTTT} \frac{10}{3}$

Let's Practice!

Initial Position	Operations to return to the initial position
$TT = T^2$	
$TTT = T^3$	
$TTTTT = T^4$	
T^n	

Let's Practice!

Initial Position	Operations to return to the initial position
Т	RT
$TT = T^2$	RTRTT
$TTT = T^3$	RTRTTRTT
$TTTTT = T^4$	RTRTTRTTRTT
T^n	$RT(RTT)^{n-1}$

Sequence: TTRTRTRTRTRTTTTT

Sequence: TTRTRTRTRTRTTTTT

(b) Sequence: TTRTRTRTRTRTRTTTTAnswer: $\frac{0}{1} \xrightarrow{TT} \frac{2}{1} \xrightarrow{R} \frac{-1}{2} \xrightarrow{T} \frac{1}{2} \xrightarrow{R} \frac{-2}{1} \xrightarrow{T} \frac{-1}{1} \xrightarrow{R} \frac{1}{1} \xrightarrow{T} \frac{2}{1} \xrightarrow{R} \frac{-1}{2} \xrightarrow{TT} \frac{3}{2} \xrightarrow{R} \frac{-2}{3} \xrightarrow{TTTT} \frac{10}{3}$

- Math Circles (by Kelly Barnes)
- Tom Davis. *Conway's rational tangles. 2010*
- James Tanton. Understanding Rational Tangles. 2012